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REPORT

Arid lands in the southwestern United States are being used increas-
ingly for recreation, housing, and purposes of national defense (1). Thus
it is desirable to document, analyze, and, ideally, predict the environ-
mental impacts resulting from such uses. Among the most conspicuous of
these impacts is the physical response of desert landscapes to off-road
vehicles (ORV's) (2). Evaluation of this response can lead to better
understanding of hydrological and geomorphological processes in arid regions
and can establish base-line information on substrate responses that affect
overall desert ecology.

During the past decade a number of studies have documented the effects
of ORV activity on physical and biological components of the desert envi-
ronment (3). However, because these studies were entirely empirical and
often qualitative, their applicability was severely limited to areas char-
acterized by soils and climate practically identical to those at the study
site. To remedy this situation, we conducted a quantitative study of ORV
impact based on controlled field experiments with special attention dir-
ected at the underlying principles. In this report, we summarize our
results on the effects of ORV's on soil bulk density and infiltration capa-
city, and on runoff and erosion processes in the western Mojave Desert,
California. We also briefly discuss erosion prediction for disturbed lands,
expectations for landscape recovery and implications for land-use planning.

Compaction of soil by vehicle tires may extend to a depth of several
decimeters (4-7). This is clearly reflected in the increase in effective
soil strength, which is conveniently measured as the resistance to pene-
tration of ametallic cone (Figure 1). We found that soil bulk density
increases logarithmically with the number of vehicle passes: to; that is, the
largest increase per pass occurs during the first few passes. These results
are shown on Figure 2 for a western Mojave Desert loamy sand subjected
to 0,1, 10, 100, and 200 motorcycle passes and having an average moisture
content of 6.2 percent (by weight) at the time of compaction. The relevant
regression equation

= 1.60 + 0.0337 In n (1)

relates dried bulk density o (tons per cubic meter) of cores, which sample

the upper 60 mm of soil, to the number of passes n, with regression coefficient
r .79. The form of th1s empirical equation also appears to be valid for
d1fferent moisture contents and soil textures (5).

Compaction almost invariably reduces the infiltration capacity of soil.
Changes in bulk density however, do not fully reflect the extent to which
soil hydrological properties are modified by vehicle use. The terminal
infiltration rate fi (millimeters per hour) of the compacted loamy sand,
measured after 2 hours of infiltration from double-ring infiltrometers, is
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shown in Figure 3 and expressed by
ft =81 -971nn (2)

with »2 = ,67. Changes in moisture retention characteristics were analyzed
in a laboratory pressure-plate apparatus. The samples analyzed were 40
minimally disturbed core samples, 57 mm in diameter by 30 mm in height,
taken after various intensities of vehicle use (5). On the basis of these
changes, effective pore-size distributions of soils subjected to 0, 1, 10,
100, and 200 motorcycle passes were calculated (8). It is evident that

most of the observed increases in bulk density result from destruction of

relatively large pores (effective diameter >4.5 um) (Table 1). Because
soil infiltration capacity is predominantly controlled by the presence and
interconnection of these large pores, ORV use markedly reduces infiltration.

Under natural conditions, most soil-mani:2d western Mojave Desert sur-
faces have such high infiltration capacities that there is no runoff except
during the most intense storms. Rainfall of 40 to 60 mm/hour for 20 minutes
would be required to gemerate runoff on the initially dr/, undisturbed sur-
faces we examined (9). Comparison with available rainfall data suggests
that Horton overland flow and accompanying soil erosion may only recur at
intervals of tens of years on many such surfaces (10). In contrast, ORV-
impacted areas experience local ponding and runoff during rainfall of less
than 10 mm/hour and, hence are subjected to much more frequent erosion by
overland flow.

In addition to promoting runoff, tire-soil interactions render the
ground surface more susceptible to erosion. Granular desert soil materials
generally are easily transported by water and wind, and the stabilizing
influence of vegetation, surface crusts, and surface concentrations of coarse
particles is often of paramount importance in inhibiting rapid erosion under
natural conditions. This stabilizing influence is considerably reduced when
the terrain is disrupted by ORV's (71, 12). The change is reflected in
accelerated water erosion on ORV-used desert hillslopes, where the denuda-
tion rates are commonly 1 to 2 orders of magnitude greater than natural
erosion rates (13).

We identified the principal factors affecting this accelerated water
erosion by ana]yzing data from 50 rainfall simulation experiments on adjacent
used and unused 1-m? plots in three ORV-used areas in the western Mojave (7,
11). Paired t-tests applied to paired-plot data show that ORV's increase
both volume of surface water runoff and sediment yield at 99.9 percent con-
fidence levels. Runoff was typiczily about five times greater and sediment
yield 10 to 20 times greater on vehicle-used plots than on unused plots.

In addition to decreasing soil infiltration capacity and rendering more
material available for entrainment, ORV's significantly modify runoff hydrau-
1ic properties. Boundary resistance to overland flow, as expressed by Darcy-
Weisback friction factors (14), is reduced an average of 13-fold after inten-
sive ORV use (21). This reflects tiie smoothing of hillsides by vehicles
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Figure 3. The effect of repeated wotorcycle passes on the terminal .
infiltration rate of the Fremont Peak loamy sand. The
infiltration rates for the undisturbed soil were not
included in the regression analysis.
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TABLE 1
Changes in soil bulk density and effective pore-size distributioq due to compaction by
motorcycle passage. The soil, a loamy sand from the western Mojave Desert, was sampled

to a depth of 60 mm.

| Bulk Pore Volume (cn’/q) in Effective Radii Range
| Kumber Density*
of Passes {a/em3) r > 4.5um 1.5ar <, 5ym re<l.5um
undisturbed 1.52 .21 .012 .051
| 1.60 19 .015 .050
.10 1.68 a7 .013 T .46
iy ' 100 1.77 .15 .012 .046
. 200 1.78 4 o .043
3

*for 23 samples in the undisturbed area and 12 samples in each trail.
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traveling directly upslope. Microtopographic irregularities perpendicular
to vehicle trails tend to be subdued, and ruts formed along trails accel-
erate erosion by channeling runoff and allowing it to propagate more rapidly
downhill. Qualitative field observations indicate that intermittent ponding
and flow diversions caused by microtopographic roughness—often created by
plants and burrowing animals on natural desert hillslopes—are efficient dis-
sipators of flow energy and commonly cause deposition of sediment at short
(<1-m) intervals. After ORV use, not only is more runoff power (15) usually
available to transport sediment, but greater sediment yields usually result
for eguivalent amounts of runoff power (Fig. 4). This probably reflects an
artificially induced change from water erosion 1imited by surface stabi'.iza-
tion to erosion limited by the sediment transport capacity of runoff. Thus,
ORV modifications of the desert surface fundamentally change its response to
runoff.

We tentatively identified the areas most susceptible to ORV-induced in-
creases in water erosion by performing multivariate statistical analyses of
22 experimental variables reflecting rainfall and slope characteristics, sur-
face and subsurface soil textures and strength, and infiltration rates. The
character of rainfall is by far the most important factor in predicting the
increase in erosion. Multiple linear regression relating rainfall energy-
intensity (16), slope inclination, and the proportion of the surface covered
with fine particles (<1-mm sieve diameter) on undisturbed plots to the increase
in sediment yield after ORV use produces a multiple »2 of .72. Alternatively,
rainfall energy-intensity and undisturbed plot infiltration capacity can be
used to predict increases in sediment yield (»2 = .83). Overall, the anal-
ysis predicts that after ORV use, accelerated water erosion will be least
severe in (i) areas subject to rainfall of short duration and low intensity,
(i) areas with high initial infiltration rates and low slope, and (iii)
areas with abundant surface sand and gravel (7). However, many of these areas
seem(to)be particularly susceptible to accelerated wind erosion after ORV
use (12).

A key concern regarding desert terrain is its rate of recovery after
these hydrologic and geomorphic disturbances. Extrapolation of data reflect-
ing 51 years of natural recovery from soil compaction at the abandoned
Wahmonie townsite in southern Nevada suggests that roughly a century is
required for bulk density, strength, and infiltration capacity to be restored.
Invading vegetation usually appears in such compacted areas in a few years,
but native perennial species are very slow to return (17). Our observations
and those of others (19) suggest that surface crusts reform rather rapidly
after disruption, often during the first subsequent period of wetting and
drying. Reestablishment of well-developed surface stone covers in severely
disturbed areas may require hundreds of years (6), while at other sites
recovery may require tens of years (19). Due to this generally slow return
to natural conditions, enhanced erosion may continue for a long time and,
because of the exceedingly slow formation of desert soil, accelerated soil
loss may be the most long-lasting and difficult to alleviate of all ORV

impacts.
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Analysis of ORV-induced terrain modification leads to findings that
hold several implications for desert land-use management: 1) Vehicle
use on virtually any but bare rock desert surfaces leads to considerable
hydrologic and/or geomorphologic impact even with relatively low levels
of use. This suggests that vehicular activities might best be confined
to designated "sacrifice" areas in which severe environmental degradation
would be spatially restricted. Logical candidates for such areas are
those that have already suffered impact, although analysis of precipita-
tion, topographic, and soils characteristics can be used to identify the
relative sensitivity of other, initally undisturbed areas. 2) Manage-
ment of such activity should be conducted at the drainage basin scale.
Greatly increased runoff and/or erosion in one part of a basin will affect
other parts, and the effects may be very long-lived. 3) Vehicle use
should be discouraged during wet periods when all water erosion occurs
and when soils are most susceptible to compaction and structural disruption.

We believe that considerable progress has been made towards documenting
and understanding the effects of artificial disturbances on arid landscapes.
However, we wish to stress that a great deal of work remains in the dev-
elopment of comprehensive scientific criteria applicable to land-use

management problems.
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Effective pore-size distributions were obtained by using the relation

r = 20/¢, where » is maximum effective radius of pores retaining water,

o is surface tension of the air-water interface, and ¥ is matric poten-
tial. Matric potential is given as a function of volumetric moisture

%o?tent by the experimentally determined moisture characteristic curve
5).

Rainfall simulation data (7, 11) and drip infiltrometer data (5) at
similar localities with predominantly sandy soils yielded similar results.

We used U.S. Weather Bur. Tech. Pap. 28 (1958) to estimate the relations
between the intensity, duration, and frequency of rainfall in the study
areas. Horton overland flow is generated when rainfall intensity ex-
ceeds soil infiltration capacity.

R.M. Iverson [Earth Surface Processes 5, 369 (1980)]studied processes ;
of accelerated pluvial erosion on desert hillslopes modified by vehicular E

traffic.

D.A. Gillette, J. Adams, A. Endo, D. Smith, R. Kihl (J. Geophys. Res.,
in press) experimentally studied accelerated wind erosion on desert
surfaces used by ORV's.

Erosion rates for small drainage basins in semi-arid Wyoming, as
measured by R.F. Hadley and S.A. Schumm [U.S. Geol. Surv. Water Suopply
Pap. 1531-B (1981)], varied from 0.02 to 0.6 mm/year; and point surface
lowering measurements from New Mexico by L.B. Leopold, W.W. Emmett and
R.M. Mynek (U.S. Geol. Survey Prof. Paper 352-G (1966)) averaged 5.3
mm/year. Compare these values to the 150 mm/year measured by Snyder

et al. (4) in Dove Springs Canyon, California, an area subjected to ORV
use, or the 220 mm/year measured by R. Stull, S. Shipley, E. Hovanitz,
S. Thompson, and K. Hovanitz [Geology 7, 19 (1979)] in Ballinger Canyon,
California, another such area.

The friction factor is defined as f = 8gq(sin®)/w3 where g is gravita-
tional acceleration, g is runoff discharge per unit width, ¢ is the
inclination of water surface, and v is mean runoff velocity.

Spatially and temporally averaged runoff power per unit area is p = Ty
= pgq(sin®), where 1q is mean bed shear stress and o is fluid density.
R.A. Bagnold [Water Resour. Res. 13, 303 (1977)] discussed the general
relation between flow power and sediment transnmort. M. Kilinc and E.
V. Richardson [Colo. State Univ. (Fort Collins) Hydrol. Pap. 63 (1973)]
found that the rate of sediment transport by artificially generated
shallow flows was closely related to flow power. See also (11).

Energy-intensity for these experiments is equal to the average intensity
of the rainfall during 20 minutes multiplied by the total kinetic energy
released.
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R.H. Webb and H.G. Wilshire (J. Arid Environ., in press) determined soil
property and vegetation recovery rates through measurements of areas
undisturbed for known times since their initial disturbance. The
Wahmonie site offers this unique opportunity because it is located on
the Nevada Military Test Site, which is closed to the public.

R.E. Eckert, M.K. Wood, W.H. Blackburn, F.F. Peterson [J. Range Manage.
32, 394 (1979)] studied the effects of crust development on infiltration
and the production of suspended sediment on ORV-modified desert soils.

Farres [Earth Surf. Processes 3, 243 (1978)] experimentally demonstrated
that a considerable surface crust may form during a single rainfall.

D. Sharon, Z. Geomorphol. 6, 129 (1962).
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